Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.799
Filtrar
1.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38653491

RESUMO

Coronaviruses have threatened humans repeatedly, especially COVID-19 caused by SARS-CoV-2, which has posed a substantial threat to global public health. SARS-CoV-2 continuously evolves through random mutation, resulting in a significant decrease in the efficacy of existing vaccines and neutralizing antibody drugs. It is critical to assess immune escape caused by viral mutations and develop broad-spectrum vaccines and neutralizing antibodies targeting conserved epitopes. Thus, we constructed CovEpiAb, a comprehensive database and analysis resource of human coronavirus (HCoVs) immune epitopes and antibodies. CovEpiAb contains information on over 60 000 experimentally validated epitopes and over 12 000 antibodies for HCoVs and SARS-CoV-2 variants. The database is unique in (1) classifying and annotating cross-reactive epitopes from different viruses and variants; (2) providing molecular and experimental interaction profiles of antibodies, including structure-based binding sites and around 70 000 data on binding affinity and neutralizing activity; (3) providing virological characteristics of current and past circulating SARS-CoV-2 variants and in vitro activity of various therapeutics; and (4) offering site-level annotations of key functional features, including antibody binding, immunological epitopes, SARS-CoV-2 mutations and conservation across HCoVs. In addition, we developed an integrated pipeline for epitope prediction named COVEP, which is available from the webpage of CovEpiAb. CovEpiAb is freely accessible at https://pgx.zju.edu.cn/covepiab/.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Epitopos , SARS-CoV-2 , Humanos , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/virologia , Anticorpos Neutralizantes/imunologia , Epitopos/imunologia , Epitopos/química , Epitopos/genética , Coronavirus/imunologia , Coronavirus/genética , Bases de Dados Factuais , Reações Cruzadas/imunologia
2.
Biomolecules ; 14(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38540792

RESUMO

Japanese encephalitis virus (JEV) remains a global public health concern due to its epidemiological distribution and the existence of multiple strains. Neutralizing antibodies against this infection have shown efficacy in in vivo studies. Thus, elucidation of the epitopes of neutralizing antibodies can aid in the design and development of effective vaccines against different strains of JEV. Here, we describe a combination of native mass spectrometry (native-MS) and hydrogen/deuterium exchange mass spectrometry (HDX-MS) to complete screening of eight mouse monoclonal antibodies (MAbs) against JEV E-DIII to identify epitope regions. Native-MS was used as a first pass to identify the antibodies that formed a complex with the target antigen, and it revealed that seven of the eight monoclonal antibodies underwent binding. Native mass spectra of a MAb (JEV-27) known to be non-binding showed broad native-MS peaks and poor signal, suggesting the protein is a mixture or that there are impurities in the sample. We followed native-MS with HDX-MS to locate the binding sites for several of the complex-forming antibodies. This combination of two mass spectrometry-based approaches should be generally applicable and particularly suitable for screening of antigen-antibody and other protein-protein interactions when other traditional approaches give unclear results or are difficult, unavailable, or need to be validated.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Hidrogênio , Animais , Camundongos , Mapeamento de Epitopos/métodos , Vírus da Encefalite Japonesa (Espécie)/metabolismo , Deutério/química , Anticorpos Antivirais , Epitopos/química , Anticorpos Neutralizantes , Espectrometria de Massas/métodos , Anticorpos Monoclonais
3.
FEBS Lett ; 598(8): 902-914, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38529702

RESUMO

Apolipoprotein E (apoE) is a regulator of lipid metabolism, cholesterol transport, and the clearance and aggregation of amyloid ß in the brain. The three human apoE isoforms apoE2, apoE3, and apoE4 only differ in one or two residues. Nevertheless, the functions highly depend on the isoform types and lipidated states. Here, we generated novel anti-apoE monoclonal antibodies (mAbs) and obtained an apoE4-selective mAb whose epitope is within residues 110-117. ELISA and bio-layer interferometry measurements demonstrated that the dissociation constants of mAbs are within the nanomolar range. Using the generated antibodies, we successfully constructed sandwich ELISA systems, which can detect all apoE isoforms or selectively detect apoE4. These results suggest the usability of the generated anti-apoE mAbs for selective detection of apoE isoforms.


Assuntos
Anticorpos Monoclonais , Apolipoproteínas E , Isoformas de Proteínas , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/química , Humanos , Isoformas de Proteínas/imunologia , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/química , Apolipoproteínas E/imunologia , Animais , Epitopos/imunologia , Epitopos/química , Ensaio de Imunoadsorção Enzimática/métodos , Camundongos , Apolipoproteína E4/genética , Apolipoproteína E4/imunologia , Apolipoproteína E4/metabolismo , Camundongos Endogâmicos BALB C , Apolipoproteína E3/imunologia , Apolipoproteína E3/genética , Apolipoproteína E3/química , Apolipoproteína E3/metabolismo
4.
J Biosci Bioeng ; 137(4): 321-328, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342664

RESUMO

A novel, efficient and cost-effective approach for epitope identification of an antibody has been developed using a ribosome display platform. This platform, known as PURE ribosome display, utilizes an Escherichia coli-based reconstituted cell-free protein synthesis system (PURE system). It stabilizes the mRNA-ribosome-peptide complex via a ribosome-arrest peptide sequence. This system was complemented by next-generation sequencing (NGS) and an algorithm for analyzing binding epitopes. To showcase the effectiveness of this method, selection conditions were refined using the anti-PA tag monoclonal antibody with the PA tag peptide as a model. Subsequently, a random peptide library was constructed using 10 NNK triplet oligonucleotides via the PURE ribosome display. The resulting random peptide library-ribosome-mRNA complex was selected using a commercially available anti-HA (YPYDVPDYA) tag monoclonal antibody, followed by NGS and bioinformatic analysis. Our approach successfully identified the DVPDY sequence as an epitope within the hemagglutinin amino acid sequence, which was then experimentally validated. This platform provided a valuable tool for investigating continuous epitopes in antibodies.


Assuntos
Biblioteca de Peptídeos , Peptídeos , Mapeamento de Epitopos/métodos , Análise Custo-Benefício , Peptídeos/genética , Peptídeos/química , Anticorpos Monoclonais/genética , Epitopos/genética , Epitopos/química , Ribossomos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Biologia Computacional , RNA Mensageiro
5.
Food Funct ; 15(5): 2524-2535, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38345089

RESUMO

Lactic acid bacterial fermentation helps reduce the immunoreactivity of soy protein. Nevertheless, the effect of lactic acid bacterial fermentation on a particular soy allergen and the consequent dynamic change of epitopes during gastrointestinal digestion are unclear. In this study, soy glycinin was isolated and an in vitro dynamic gastrointestinal model was established to investigate the dynamic change in the immunoreactivity and peptide profile of unfermented (UG) and fermented glycinin (FG) digestates. The results demonstrated that the FG intestinal digestate had a lower antigenicity (0.08%-0.12%) and IgE-binding capacity (1.49%-3.61%) towards glycinin at the early (I-5) and middle (I-30) stages of gastrointestinal digestion, especially those prepared at 2% (w/v) protein concentration. Peptidomic analysis showed that the glycinin subunits G1 and G2 were the preferred ones to release the most abundant peptides, whereas G2, G4, and G5 had an elevated epitope-cleavage rate in FG at stages I-5 and I-30. Three-dimensional modeling revealed that fermentation-induced differential degradation epitopes in gastrointestinal digestion were predominantly located in the α-helix and ß-sheet structures. They were closely correlated with the reduced immunoreactivity of soy glycinin.


Assuntos
Globulinas , Proteínas de Soja , Proteínas de Soja/química , Globulinas/química , Epitopos/química , Digestão , Ácido Láctico , Proteômica
6.
Glycobiology ; 34(3)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38181393

RESUMO

Heparan sulfate (HS) plays its biological functions by interacting with hundreds of secreted extracellular and transmembrane proteins. Interaction with HS has been shown to be required for the normal function of many HS-binding proteins. Receptor for advanced glycation end-product (RAGE) is such a protein, whose activation requires HS-induced oligomerization. Using RAGE as an exemplary protein, we show here the workflow of a simple method of developing and characterizing mAbs that targets the HS-binding site. We found that HS-binding site of RAGE is quite immunogenic as 18 out of 94 anti-RAGE mAbs target various epitopes within the HS-binding site. Sequence analysis found that a common feature of anti-HS-binding site mAbs is the presence of abundant acidic residues (range between 6 to 11) in the complementarity determining region, suggesting electrostatic interaction plays an important role in promoting antigen-antibody interaction. Interestingly, mAbs targeting different epitopes within the HS-binding site blocks HS-RAGE interaction to different degrees, and the inhibitory effect is highly consistent among mAbs that target the same epitope. Functional assay revealed that anti-HS-binding site mAbs show different potency in inhibiting osteoclastogenesis, and the inhibitory potency does not have a simple correlation with the affinity and the epitope. Our study demonstrates that developing HS-binding site targeting mAbs should be applicable to most HS-binding proteins. By targeting this unique functional site, these mAbs might find therapeutic applications in treating various human diseases.


Assuntos
Anticorpos Monoclonais , Heparitina Sulfato , Humanos , Heparitina Sulfato/química , Epitopos/química , Sítios de Ligação
7.
Food Funct ; 15(1): 196-207, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38047408

RESUMO

Ovomucoid is the immune-dominant allergen in the egg white of hens. Due to its structure based on nine disulfide bonds as well as its resistance to heat and enzymatic hydrolysis, the allergenicity of this food protein is difficult to decrease by technological processes. We sought to reduce its allergenicity through the Maillard reaction. The unfolding of ovomucoid with L-cysteine-mediated reduction was used to increase accessibility to conformational and linear epitopes by modifying the secondary and tertiary structures of the allergen. Glycation with different saccharides revealed the beneficial effect of maltose glycation on the IgG-binding capacity reduction. By determining the better glycation conditions of unfolded ovomucoid, we produced ovomucoid with reduced IgE binding capacity due to the glycation sites (K17, K112, K129, and K164) on epitopes. Moreover, after simulated infant and adult gastrointestinal digestion, the unfolded plus glycated ovomucoid showed higher ABTS˙+ scavenging activity, O2˙- scavenging activity, ˙OH scavenging activity, Fe2+ chelating activity, and a FRAP value; in particular, for ˙OH scavenging activity, there was a sharp increase of more than 100%.


Assuntos
Reação de Maillard , Ovomucina , Humanos , Lactente , Adulto , Animais , Feminino , Ovomucina/química , Ovomucina/metabolismo , Antioxidantes , Galinhas/metabolismo , Epitopos/química , Alérgenos/química , Imunoglobulina E/química , Imunoglobulina G/química
8.
J Sci Food Agric ; 104(4): 2477-2483, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968892

RESUMO

BACKGROUND: Wheat gluten (WG) containing gliadin and glutenin are considered the main allergens in wheat allergy as a result of their glutamine-rich peptides. Deamidation is a viable and efficient approach for protein modifications converting glutamine into glutamic acid, which may have the potential for allergenicity reduction of WG. RESULTS: Deamidation by citric acid was performed to investigate the effects on structure, allergenicity and noodle textural properties of wheat gluten (WG). WG was heated at 100 °C in 1 m citric acid to yield deamidated WG with degrees of deamidation (DD) ranging from DWG-25 (25% DD) to DWG-70 (70% DD). Fourier-transform infrared and intrinsic fluorescence spectroscopy results suggested the unfolding of WG structure during deamidation, and sodium dodecyl sulphate-polyacrylamide gel electrophoresis showed molecular weight shifts at the 35-63 kDa region, suggesting that the deamidation mainly occurred on low molecular weight glutenin subunits and γ- gliadin of the WG. An enzyme-linked immunosorbent assay of deamidated WG revealed a decrease in absorbance and immunoblotting indicated that the intensities of protein bands at 35-63 kDa decreased, which suggested that deamidation of WG might have caused a greater loss of epitopes than the generation of new epitopes caused by unfolding of WG, and thereby reduction of the immunodominant immunoglobulin E binding capacity, ultimately leading to the decrease in allergenicity. DWG-25 was used in the preparation of recombinant hypoallergenic noodles, and the hardness, elasticity, chewiness and gumminess were improved significantly by the addition of azodicarbonamide. CONCLUSION: The present shows the potential for deamidation of the WG products used in novel hypoallergenic food development. © 2023 Society of Chemical Industry.


Assuntos
Gliadina , Hipersensibilidade a Trigo , Humanos , Alérgenos/química , Glutamina , Glutens/química , Epitopos/química , Ácido Cítrico
9.
Food Chem ; 438: 137920, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38000156

RESUMO

The digestion products of Penaeus vannamei still had sensitizing and eliciting capacity; however, the underlying mechanism has not been identified. This study analyzed the structural changes of shrimp proteins during digestion, predicted the linearmimotopepeptides and first validated the allergenicity of immunodominantepitopes with binding ability. The results showed that the shrimp proteins were gradually degraded into small peptides during digestion, which might lead to the destruction of linear epitopes. However, these peptides carried IgE epitopes that still trigger allergic reactions. Eighteen digestion-resistant epitopes were predicted by multiple immunoinformatics tools and digestomics. Five epitopes contained more critical amino acids and had strong molecular docking (P1: DSGVGIYAPDAEA, P2: EGELKGTYYPLTGM, P3: GRQGDPHGKFDLPPGV, P4: IFAWPHKDNNGIE, P5: KSTESSVTVPDVPSIHD), and these epitopes were identified as novel IgE binding immunodominantepitopes in Penaeus vannamei. These findings provide novel insight into allergenic epitopes, which might serve as key targets for reducing the allergenicity in shrimp.


Assuntos
Penaeidae , Animais , Sequência de Aminoácidos , Epitopos Imunodominantes , Alérgenos/química , Simulação de Acoplamento Molecular , Imunoglobulina E , Peptídeos , Epitopos/química , Digestão , Tropomiosina/química
10.
J Sci Food Agric ; 104(6): 3697-3704, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38160247

RESUMO

INTRODUCTION: One of the main allergens in soybeans is glycinin, which seriously impacts the normal lives of allergic people. Previous studies have confirmed that thermal processing and thermal processing combined with ultrahigh-pressure processing could significantly reduce the antigenicity of glycinin. The dominant antigen region of acidic peptide chain A2 of G2 subunit was located by phage display experiment. METHODS: In this paper, overlapping peptides and alanine substitution techniques were used to explore the key amino acids that significantly affect the antigenicity of A2 peptide chain. The purity of peptide 1, peptide 2 and peptide 3 was identified by mass spectrometry and high-performance liquid chromatography, and the results showed that the purity of the synthesized overlapping peptide was more than 90%. SDS-PAGE showed that the peptide was successfully coupled with bovine serum albumin. The antigenicity of the coupling peptide was tested by ELISA and Dot-Blot, and the allergenicity was detected by reacting with the serum of patients with soybean globulin allergy. CONCLUSION: The results showed that peptide 3 has stronger antigenicity and sensitization. Alanine substitution technology allowed one to perform site-directed mutagenesis on peptide 3. Dot-Blot and ELISA tests showed that D259, E260, E261, Q263 and C266 may be the key amino acids that significantly affect the antigenicity of peptide 3. The research presented is of great significance for correctly guiding the production of safe food and preventing the occurrence of food allergic diseases. © 2023 Society of Chemical Industry.


Assuntos
Globulinas , Proteínas de Soja , Humanos , Epitopos/química , Proteínas de Soja/química , Soja , Globulinas/química , Alérgenos , Peptídeos , Alanina , Aminoácidos , Imunoglobulina E
11.
Vet Immunol Immunopathol ; 267: 110690, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38096644

RESUMO

Canine immune-mediated polyarthritis (IMPA) is an idiopathic disorder encompassing both erosive and non-erosive forms of rheumatoid arthritis (RA), with a clinical picture similar to human RA. Resemblance in major histocompatibility complex (MHC)-associated risk between the two was first noted within the specific amino acid motif known as the shared epitope (SE) on human leukocyte antigen DRB1. Following further identification of amino acids conferring risk for human RA outside the SE, this study was designed to examine amino acids both within and outside the classic SE in dachshunds, a breed with reported susceptibility to IMPA in Japan. Genome-wide association studies have linked positions 11, 13 and 71 with strong risk for human RA and important roles in antigen presentation to T cells. Sequence based genotyping of 16 case and 64 control dachshunds revealed strong associations comparable to human RA between IMPA risk and valine at position 11 (Val-11), phenylalanine at 13 (Phe-13), and arginine at 71 (Arg-71) on the dog leukocyte antigen (DLA)-DRB1 molecule (OR 2.89, 95%CI 1.3-6.4, p = 0.009), while association with the classic SE was significant only regarding homozygote frequency of the QRRAA haplotype-also carrying Val 11 and Phe 13 outside the SE (p = 0.04). Moreover, limited range in possible combinations of amino acids at positions 11, 13 and 71 starting with Val-11 among all DLA-DRB1 alleles registered with the GenBank and IPD-MHC canine databases, suggested potential of further single-breed analyses in dachshunds to clarify the disorder in terms of diagnosis, treatment, and epigenetic control, while clinical and immunopathogenetic similarities between human and dachshund RA also suggested the possibility of gaining insight into RA per se through study of canine IMPA as a spontaneous model of human RA.


Assuntos
Artrite Reumatoide , Doenças do Cão , Humanos , Cães , Animais , Epitopos/genética , Epitopos/química , Aminoácidos , Estudo de Associação Genômica Ampla/veterinária , Predisposição Genética para Doença , Artrite Reumatoide/genética , Artrite Reumatoide/veterinária , Cadeias HLA-DRB1/genética , Alelos , Doenças do Cão/genética
12.
Nat Commun ; 14(1): 8502, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38135691

RESUMO

In human celiac disease (CeD) HLA-DQ2.5 presents gluten peptides to antigen-specific CD4+ T cells, thereby instigating immune activation and enteropathy. Targeting HLA-DQ2.5 with neutralizing antibody for treating CeD may be plausible, yet using pan-HLA-DQ antibody risks affecting systemic immunity, while targeting selected gluten peptide:HLA-DQ2.5 complex (pHLA-DQ2.5) may be insufficient. Here we generate a TCR-like, neutralizing antibody (DONQ52) that broadly recognizes more than twenty-five distinct gluten pHLA-DQ2.5 through rabbit immunization with multi-epitope gluten pHLA-DQ2.5 and multidimensional optimization. Structural analyses show that the proline-rich and glutamine-rich motif of gluten epitopes critical for pathogenesis is flexibly recognized by multiple tyrosine residues present in the antibody paratope, implicating the mechanisms for the broad reactivity. In HLA-DQ2.5 transgenic mice, DONQ52 demonstrates favorable pharmacokinetics with high subcutaneous bioavailability, and blocks immunity to gluten while not affecting systemic immunity. Our results thus provide a rationale for clinical testing of DONQ52 in CeD.


Assuntos
Doença Celíaca , Glutens , Camundongos , Animais , Humanos , Coelhos , Glutens/química , Anticorpos Neutralizantes , Antígenos HLA-DQ , Peptídeos/química , Epitopos/química , Camundongos Transgênicos
13.
mSystems ; 8(6): e0072223, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37975681

RESUMO

IMPORTANCE: Determining antigen and epitope specificity is an essential step in the discovery of therapeutic antibodies as well as in the analysis adaptive immune responses to disease or vaccination. Despite extensive efforts, deciphering antigen specificity solely from BCR amino acid sequence remains a challenging task, requiring a combination of experimental and computational approaches. Here, we describe and experimentally validate a simple and straightforward approach for grouping antibodies that share antigen and epitope specificities based on their CDR sequence similarity. This approach allows us to identify the specificities of a large number of antibodies whose antigen targets are unknown, using a small fraction of antibodies with well-annotated binding specificities.


Assuntos
Anticorpos , Regiões Determinantes de Complementaridade , Regiões Determinantes de Complementaridade/genética , Anticorpos/química , Antígenos/química , Epitopos/química , Imunidade , Análise por Conglomerados
14.
J Biol Chem ; 299(12): 105460, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977224

RESUMO

The motifs involved in tropism and immunological interactions of SARS-CoV spike (S) protein were investigated utilizing the Qubevirus platform. We showed that separately, 14 overlapping peptide fragments representing the S protein (F1-14 of 100 residues each) could be inserted into the C terminus of A1 on recombinant Qubevirus without affecting its viability. Additionally, recombinant phage expression resulted in the surface exposure of different engineered fragments in an accessible manner. The F6 from S425-525 was found to contain the binding determinant of the recombinant human angiotensin-converting enzyme 2, with the shortest active binding motif situated between residues S437-492. Upstream, another fragment, F7, containing an overlapping portion of F6 would not bind to recombinant human angiotensin-converting enzyme 2, confirming that a contiguous stretch of residues could adopt the appropriate structural orientation of F6 as an insertion within the Qubevirus. The F6 (S441-460) and other inserts, including F7/F8 (S601-620) and F10 (S781-800), were demonstrated to contain important immunological determinants through recognition and binding of S protein specific (anti-S) antibodies. An engineered chimeric insert bearing the fusion of all three anti-S reactive epitopes improved substantially the recognition and binding to their cognate antibodies. These results provide insights into humoral immune relevant epitopes and tropism characteristics of the S protein with implications for the development of subunit vaccines or other biologics against SARS-CoV.


Assuntos
Enzima de Conversão de Angiotensina 2 , Biblioteca de Peptídeos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Glicoproteína da Espícula de Coronavírus , Humanos , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Antivirais/imunologia , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Ligação Proteica , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo
15.
Bioconjug Chem ; 34(11): 2022-2033, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37861691

RESUMO

Modified antibodies have essential roles in analytic, diagnostic, and therapeutic uses, and thus, these antibodies are required to have optimal physical and biological properties. Consequently, the development of methods for site-selective antibody modification is crucial. Herein, we used epitope-based affinity labeling to introduce a Fab region-selective antibody modification method. Although labeling that exploits the high affinity between an antibody and its epitope may appear straightforward, it remains challenging probably because of the loss of target affinity caused by modification around the epitope-binding site. By thoroughly screening the modifying agent structure, reaction conditions, and purification methods, we developed an efficient method for the selective modification of the Fab region of the antibody while maintaining the high affinity for the epitope.


Assuntos
Anticorpos Monoclonais , Fragmentos Fab das Imunoglobulinas , Epitopos/química , Anticorpos Monoclonais/química , Afinidade de Anticorpos
16.
J Virol ; 97(10): e0093823, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37792003

RESUMO

IMPORTANCE: Human norovirus (HuNoV) is highly infectious and can result in severe illnesses in the elderly and children. So far, there is no effective antiviral drug to treat HuNoV infection, and thus, the development of HuNoV vaccines is urgent. However, NoV evolves rapidly, and currently, at least 10 genogroups with numerous genotypes have been found. The genetic diversity of NoV and the lack of cross-protection between different genotypes pose challenges to the development of broadly protective vaccines. In this study, guided by structural alignment between GI.1 and GII.4 HuNoV VP1 proteins, several chimeric-type virus-like particles (VLPs) were designed through surface-exposed loop grafting. Mouse immunization studies show that two of the designed chimeric VLPs induced cross-immunity against both GI.1 and GII.4 HuNoVs. To our knowledge, this is the first designed chimeric VLPs that can induce cross-immune activities across different genogroups of HuNoV, which provides valuable strategies for the development of cross-reactive HuNoV vaccines.


Assuntos
Infecções por Caliciviridae , Epitopos , Genótipo , Norovirus , Vacinas Virais , Vírion , Animais , Humanos , Camundongos , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/prevenção & controle , Infecções por Caliciviridae/virologia , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Imunização , Norovirus/química , Norovirus/classificação , Norovirus/genética , Norovirus/imunologia , Vacinas Virais/química , Vacinas Virais/genética , Vacinas Virais/imunologia , Quimera/genética , Quimera/imunologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Vírion/química , Vírion/genética , Vírion/imunologia
17.
J Biochem ; 175(1): 85-93, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37795834

RESUMO

T7 phage libraries displaying random peptides are powerful tools for screening peptide sequences that bind to various target molecules. The T7 phage system has the advantage of less biased peptide distribution compared to the M13 phage system. However, the construction of T7 phage DNA is challenging due to its long 36 kb linear DNA. Furthermore, the diversity of the libraries depends strongly on the efficiency of commercially available packaging extracts. To address these issues, we examined the combination of seamless cloning with cell-free translation systems. Seamless cloning technologies have been widely used to construct short circular plasmid DNA, and several recent studies showed that cell-free translation can achieve more diverse phage packaging. In this study, we combined these techniques to construct four libraries (CX7C, CX9C, CX11C and CX13C) with different random regions lengths. The libraries thus obtained all showed diversity > 109 plaque forming units (pfu). Evaluating our libraries with an anti-FLAG monoclonal antibody yielded the correct epitope sequence. The results indicate that our libraries are useful for screening peptide epitopes against antibodies. These findings suggest that our system can efficiently construct T7 phage libraries with greater diversity than previous systems.


Assuntos
Bacteriófago T7 , Biblioteca de Peptídeos , Sequência de Aminoácidos , Bacteriófago T7/genética , Bacteriófago T7/metabolismo , Peptídeos/química , DNA/metabolismo , Epitopos/química , Clonagem Molecular
18.
Food Res Int ; 173(Pt 1): 113281, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803593

RESUMO

Soy allergy is a common health problem. Food structure may change the gastroduodenal digestion and absorption of soy proteins, thus leading to the modulation of the immunoreactivity of soy proteins. In this study, lactic acid bacterium (LAB)-fermented soy protein isolates (FSPIs) were prepared at four concentrations (0.2 %-5.0 %, w/v) to present various matrix structures (nongel, NG; weak gel, WG; medium gel, MG; and firm gel, FG) and subjected to in vitro dynamic gastroduodenal digestion model. The results of sandwich enzyme-linked immunosorbent and human serum IgE binding capacity assays demonstrated that FSPI gels, especially the FSPI-MG/WG digestates obtained at the early and medium stages of duodenal digestion (D-5 and D-30), possessed greater potency in immunoreactivity reduction than FSPI-NG and reduced to 1.9 %-68.3 %. The transepithelial transport study revealed that the immunoreactivity of FSPI-MG/WG D-5 and D-30 digestates decreased through the stimulation of interferon-γ production and the induction of dominant Th1/Th2 differentiation. Peptidomics and bioinformatics analyses illustrated that compared with FSPI-NG, the FSPI-gel structure promoted the epitope degradation of the major allergens glycinin G2/G5, ß-conglycinin α/ß subunit, P34, lectin, trypsin inhibitor, and basic 7S globulin. Spatial structure analysis showed that FSPI-gel elicited an overall promotion in the degradation of allergen epitopes located in interior and exterior regions and was dominated by α-helix and ß-sheet secondary structures, whereas FSPI-MG/WG promoted the degradation of epitopes located in the interior region of glycinin/ß-conglycinin and exterior region of P34/basic 7S globulin. This study suggested that the FSPI-gel structure is a promising food matrix for decreasing the allergenic potential of allergenic epitopes during gastroduodenal digestion and provided basic information on the production of hypoallergenic soy products.


Assuntos
Globulinas , Proteínas de Soja , Humanos , Proteínas de Soja/química , Epitopos/química , Globulinas/química , Digestão
19.
Int J Mol Sci ; 24(19)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37834322

RESUMO

Analytical ultracentrifugation (AUC) analysis shows that the SARS-CoV-2 trimeric Spike (S) protein adopts different quaternary conformations in solution. The relative abundance of the "open" and "close" conformations is temperature-dependent, and samples with different storage temperature history have different open/close distributions. Neutralizing antibodies (NAbs) targeting the S receptor binding domain (RBD) do not alter the conformer populations; by contrast, a NAb targeting a cryptic conformational epitope skews the Spike trimer toward an open conformation. The results highlight AUC, which is typically applied for molecular mass determination of biomolecules as a powerful tool for detecting functionally relevant quaternary protein conformations.


Assuntos
SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Epitopos/química , Epitopos/imunologia , SARS-CoV-2/química , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Ultracentrifugação , Domínios Proteicos
20.
J Agric Food Chem ; 71(42): 15796-15808, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37816072

RESUMO

Tropomyosin (TM) is a major crustacean allergen, and the present studies have tried to reduce its allergenicity by processing technologies. However, most research stopped on the allergenicity and structure of allergens, while information about epitopes was less. In this study, we first investigated the effects of cold plasma (CP) combined with glycation (CP-G) treatment on the processing and trypsin cleavage sites of TM from shrimp (Penaeus chinensis). The results showed a significant reduction in the IgE-binding capacity of TM after CP-G treatment, with a maximum reduction of 30%. This reduction was associated with the combined effects: modification induced by CP destroyed the core helical structure (D137 and E218) and occupied the potential glycation sites, leading to sequent glycation on conserved areas of TM, especially the epitope L130-Q147. Additionally, CP-G treatment decreased the digestion stability of TM by increasing the number of cleavage sites of trypsin and improving the efficiency of some sites, including K5, K6, K30, and R133, resulting in a lower IgE-binding capacity of digestion products, which fell to a maximum of 20%. Thus, CP-G is a valuable and reliable processing technology for the desensitization of aquatic products.


Assuntos
Penaeidae , Gases em Plasma , Animais , Tropomiosina/química , Reação de Maillard , Tripsina , Alérgenos/química , Penaeidae/química , Imunoglobulina E/química , Epitopos/química , Digestão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...